📈回歸範例¶
In [ ]:
Copied!
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
產生資料點¶
In [ ]:
Copied!
np.random.seed(0)
np.random.seed(0)
In [ ]:
Copied!
x = np.linspace(0, 5, 100)
x = np.linspace(0, 5, 100)
In [ ]:
Copied!
y_t = x + 1
y_t = x + 1
In [ ]:
Copied!
y = y_t + 0.5 * np.random.randn(100)
y = y_t + 0.5 * np.random.randn(100)
In [ ]:
Copied!
plt.scatter(x,y)
plt.plot(x,y_t,'r')
plt.scatter(x,y)
plt.plot(x,y_t,'r')
將資料分成訓練集跟測試集¶
In [ ]:
Copied!
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
In [ ]:
Copied!
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
In [ ]:
Copied!
len(x_train)
len(x_train)
In [ ]:
Copied!
len(x_test)
len(x_test)
In [ ]:
Copied!
x_train = x_train.reshape(80,1)
x_train = x_train.reshape(80,1)
In [ ]:
Copied!
x_test = x_test.reshape(20,1)
x_test = x_test.reshape(20,1)
使用 sklearn 裡面的Linear Regression¶
In [ ]:
Copied!
#1. 載入模型
from sklearn.linear_model import LinearRegression
#1. 載入模型
from sklearn.linear_model import LinearRegression
In [ ]:
Copied!
#2. 建立模型
regr = LinearRegression()
#2. 建立模型
regr = LinearRegression()
In [ ]:
Copied!
#3. 訓練模型
regr.fit(x_train, y_train)
#3. 訓練模型
regr.fit(x_train, y_train)
In [ ]:
Copied!
#4. 使用模型來做預測
regr.predict([[1.3]])
#4. 使用模型來做預測
regr.predict([[1.3]])
In [ ]:
Copied!
regr.predict([[2.7],[1.5]])
regr.predict([[2.7],[1.5]])
In [ ]:
Copied!
regr.coef_
regr.coef_
In [ ]:
Copied!
regr.intercept_
regr.intercept_
In [ ]:
Copied!
y_p = regr.coef_*x + regr.intercept_
y_p = regr.coef_*x + regr.intercept_
In [ ]:
Copied!
plt.plot(x,y_p,'k')
plt.plot(x,y_t,'r')
plt.plot(x,y_p,'k')
plt.plot(x,y_t,'r')
In [ ]:
Copied!
Y = regr.predict(x_test)
Y = regr.predict(x_test)
In [ ]:
Copied!
plt.scatter(x_test,y_test)
plt.plot(x_test, Y, 'r')
plt.scatter(x_test,y_test)
plt.plot(x_test, Y, 'r')