🧩分群範例¶
In [ ]:
Copied!
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
產生n群高斯分布的資料點¶
In [ ]:
Copied!
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=300, centers=3, cluster_std=0.60, random_state=0)
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=300, centers=3, cluster_std=0.60, random_state=0)
In [ ]:
Copied!
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap='viridis');
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap='viridis');
In [ ]:
Copied!
from sklearn.cluster import KMeans
kmeans = KMeans(3, random_state=0)
labels = kmeans.fit(X).predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis');
from sklearn.cluster import KMeans
kmeans = KMeans(3, random_state=0)
labels = kmeans.fit(X).predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis');
產生隨機的資料點¶
In [ ]:
Copied!
np.random.seed(0)
np.random.seed(0)
In [ ]:
Copied!
x = np.random.randn(100, 2)
x = np.random.randn(100, 2)
In [ ]:
Copied!
plt.scatter(x[:,0],x[:,1])
plt.scatter(x[:,0],x[:,1])
使用 KMeans 分群¶
In [ ]:
Copied!
# 1. 載入想要用的模型
from sklearn.cluster import KMeans
# 1. 載入想要用的模型
from sklearn.cluster import KMeans
In [ ]:
Copied!
#2. 建立模型
clf = KMeans(n_clusters=3)
#2. 建立模型
clf = KMeans(n_clusters=3)
In [ ]:
Copied!
#3. 訓練模錫
clf.fit(x)
#3. 訓練模錫
clf.fit(x)
In [ ]:
Copied!
clf.labels_
clf.labels_
In [ ]:
Copied!
plt.scatter(x[:,0], x[:,1], c=clf.labels_)
plt.scatter(x[:,0], x[:,1], c=clf.labels_)
看看新的點加入,要分到哪一群?¶
In [ ]:
Copied!
y = np.random.randn(10, 2)
y = np.random.randn(10, 2)
In [ ]:
Copied!
y
y
In [ ]:
Copied!
#4. 使用模型來預測
clf.predict(y)
#4. 使用模型來預測
clf.predict(y)